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Abstract

A new perfectly matched layer (PML) for the simulation of elastic waves in anisotropic media on an unbounded
domain is constructed. Theoretical and numerical results, showing that the stability properties of the present layer
are better than previously suggested layers, are presented. In addition, the layer can be formulated with fewer auxiliary
variables than the split-field PML.
� 2005 Elsevier Inc. All rights reserved.
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1. Introduction

The perfectly matched layer (PML) model was introduced by Berenger [1] in the context of computational
electro-magnetics. Berenger introduced the additional degrees of freedom needed for the perfect matching by
splitting one of the physical fields, and his model is therefore often referred to as the split-field model.

In [2] Collino and Tsogka showed how to construct a PML model by the split-field approach for a general
hyperbolic system. They applied their theory to the equations of linear elasticity in an anisotropic medium.
The perfect matching property follows directly from the construction. However, there is no guarantee that
the solution in the layer is damped with time. In fact, there are many examples of split-field PML models
supporting growing solutions, see e.g. [3–5]. The original PML model for Maxwell�s equations, suggested
by Berenger, supports linearly growing modes [6]. Several methods have been devised to remove growing
modes e.g. filtering [4,5], introduction of a complex frequency shift [7], and addition of stabilizing parameters
(with loss of the perfect matching) [8,9].
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Stability of the split-field PML model has been studied in numerous works, see e.g. [10–12,3,6,7]. One par-
ticularly interesting approach is that of Bécache et al. [3], who use plane wave analysis to establish necessary
conditions for weak stability of the general split-field model. This condition is violated in the cases where expo-
nential growth is observed, [3–5]. The fact that the condition is only necessary is illustrated by numerical exper-
iments where exponentially growing solutions are observed. By a detailed study of the dispersion relation,
Bécache et al. establish a set of conditions, on the coefficients of elasticity, which are necessary and sufficient
for weak stability. The results of Bécache et al. explain the observed exponential growth when the split-field
PML is used for some orthotropic media, but they do not give suggestions on how it can be removed.

In this paper we consider PML models for the equations of linear elasticity in an anisotropic medium.
There exist many PML models for the simulations of elastic waves in both isotropic and anisotropic material,
e.g. [2,13–15], which are of the split-field type. In many layers growing modes are observed. We derive a new
PML model using a method suggested by Hagstrom [16]. Hagstrom�s method is based on modification of the
modal solutions of a symmetric or strongly hyperbolic system.

For each specific problem, parameters in a candidate PML model derived with Hagstrom�s method much
be chosen (yielding a new PML model for each specific problem) such that the solution inside the layer is
damped exponentially in space. Here we show how to choose parameters for the particular problem of linear
elasticity in an anisotropic medium. Even if the solution is damped in space there is no guarantee that it will be
stable in time. We show how the techniques in [3] can be used to analyze the stability of our PML.

The main contributions of this paper is contained in Sections 5.1–5.3 and 6. The paper is organized as fol-
lows. In Section 2 definitions for well-posedness and stability are stated.

In Section 3 we introduce the equations of linear elastodynamics in anisotropic heterogeneous media. We
introduce the dispersion relation and describe how plane waves and slowness curves can be used to describe
wave propagation in different media. Here we also present the materials that will be considered throughout the
paper. These materials are the same as in [3].

In Section 4 we introduce the split-field PML model suggested by Collino and Tsogka [2]. We also review
some of the stability results from [3] for the split-field PML and discuss their choice of materials.

In Section 5 we first review the formulation of a modal PML, for a general hyperbolic system, including
several free parameters [16]. In Section 5.1 we apply the model to the equations of linear elasticity. This is
the first time the modal PML has been used for these equations. We briefly describe the geometrical interpre-
tation of the parameters in the model. We conclude that only one additional parameter can be used for the
equations of linear elasticity. The resulting model is analyzed by the perturbation techniques introduced in
[3]. We present new theoretical results showing that our PML model has better stability properties than pre-
vious split-field models. Also, the model is formulated with fewer variables than previous models. We conclude
Section 5 with a discussion of the well-posedness of the new layer model. We show that the model is weakly
well-posed.

In Section 6 we present numerical experiments, showing the efficiency of the modal PML for the simulation
of elastic waves on unbounded domains. We also present simulations illustrating the improved stability
properties.

In Section 7 we summarize and conclude.
2. Preliminaries

In this paper stability and well-posedness of perfectly matched layers used for simulation of elastic waves on
unbounded domains will be discussed. We start by defining what we mean by stability and well-posedness (see
[17]).

Consider the Cauchy problem for systems
ou
ot
¼ P

o

ox

� �
u; x 2 Rn; t P 0;

uðx; 0Þ ¼ u0ðxÞ; x 2 Rn;

ð1Þ
with initial data in L2.
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Definition 1 (Well-posedness). The Cauchy problem (1) is

(i) well-posed: if the solutions satisfy kuð�; tÞkL2 6 Kejtkuð�; 0ÞkL2 ;
(ii) weakly well-posed: if the solutions satisfy kuð�; tÞkL2 6 Kejtkuð�; 0ÞkHs for some positive integer s but not

for s = 0.

A necessary and sufficient condition for weak well-posedness is that all eigenvalues kj of the symbol P(ik)
satisfy
RfkjðP ðikÞÞg 6 j; ð2Þ

jindependent of k.

Definition 2 (Stability). We say that the Cauchy problem (1) is

(i) strongly stable: if the solutions satisfy an estimate kvð�; tÞkL2 6 Kkv0ð�ÞkL2 ;
(ii) weakly stable: if the solutions satisfy an estimate kvð�; tÞkL2 6 Kð1þ tÞskv0ð�ÞkHs , where s > 0.

A sufficient condition for weak stability is
RfkðP ðikÞÞg 6 0. ð3Þ

If, in addition to (2), P(ik) can be diagonalized by S(ik) with jS(ik)j and jS�1(ik)j uniformly bounded, then the
problem is well-posed.
3. Elastic waves

The equations of motion in a continuum can be written, with Einstein�s convention of summation,
q
o2ui

ot2
¼ orij

oxj
; ð4Þ
if body forces are neglected. We work in two dimensions and therefore the indices i, j assume the values {1, 2}.
Here q is the density, u1 and u2 are the displacements and rij is the stress tensor, which is related to the tensor
of deformation
eij ¼
1

2

oui

oxj
þ ouj

oxi

� �
;

by Hooke�s law
rij ¼ cijklekl; ð5Þ

where cijkl is the tensor of elastic constants. Using the symmetry of the tensors rij, ekl and cijkl and the scheme
ð11Þ $ ð1Þ; ð22Þ $ ð2Þ; ð12Þ $ ð21Þ $ ð3Þ;

which replaces two indices by one and four indices by 2, we can write (5)
rn ¼ cnmem; n;m ¼ 1; 2; 3;
where cmn = cnm.
Using characteristic lengths, time, etc. of the problem we can non-dimensionalize it. For the construction of

a PML it is convenient to reformulate the second order formulation (4) as a first order system
ov
ot
� A1

ov
ox1

� A2

ov
ox2

¼ 0. ð6Þ
By introducing the velocity fields v1 ¼ o�t�u1, v2 ¼ o�tu2 and denoting v3 ¼ �r1, v4 ¼ �r2, v5 ¼ �r3, the non-dimen-
sionalized version of Eq. (4) can be reformulated as a first order system (the velocity–stress formulation) with
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A1 ¼

0 0 1 0 0

0 0 0 0 1

c11 c13 0 0 0

c12 c23 0 0 0

c13 c33 0 0 0

26666664

37777775; A2 ¼

0 0 0 0 1

0 0 0 1 0

c13 c12 0 0 0

c23 c22 0 0 0

c33 c23 0 0 0

26666664

37777775. ð7Þ
Here the bared variables are the non-dimensionalized variables. In the reminder of this paper we will drop the
bars on the non-dimensionalized time and space coordinates, denoting them t and x.

For the reminder of this paper we will consider an orthotropic medium with principal axis coinciding with
the x1 and x2-axis. For such a medium we have that c13 = c23 = 0. For simplicity we will also take q to be 1.

In this paper we consider the same orthotropic materials as in [3]. These materials where chosen to illustrate
three different types of instabilities occurring when the split-field PML for anisotropic elasticity is used. The
materials are defined by the values of the coefficients of elasticity, see Table 1.

3.1. Plane waves and slowness curves

To analyze the wave propagation properties of (6) it is useful to consider the particular solution
vðx; tÞ ¼ V eiðxt�k�xÞ; ð8Þ

where k 2 R2 is the wave vector, x 2 R is the (circular) frequency and V is the amplitude. By inserting the
solution (8) into (6) we get a solvability condition, usually referred to as the dispersion relation
F ðx; kÞ � detðxI þ k1A1 þ k2A2Þ ¼ 0. ð9Þ

The solutions x(k) are the eigenvalues of the matrix �(k1A1 + k2A2), i.e. ixj = kj(P(ik)).

For waves in an orthotropic medium (with q = 1), (9) is
eF 0ðx; kÞ � x½x4 � ððc33 þ c11Þk2
1 þ ðc33 þ c22Þk2

2Þx2 þ ðc11c22 � c2
12 � 2c12c33Þk2

1k2
2 þ c11c33k4

1 þ c22c33k4
2�

¼ 0. ð10Þ
It should be noted that the eigenvalue w(k) = 0 is introduced when (4) is rewritten as a first order system (6).
This eigenvalue corresponds to a non-propagating mode. We also define
F 0ðx; kÞ � eF 0ðx; kÞ=x ¼ 0; ð11Þ

which is the dispersion relation of the second order formulation (4). As in [3], we will refer to the solutions of
(11) as physical modes and to the zero eigenvalue as a non-physical mode. Other useful quantities are the unit
wave vector, K, the phase velocity, Vp and the slowness vector S = (S1, S2), defined by
K ¼ k
jkj ; Vp ¼

x
jkj ; S ¼ k

x
. ð12Þ
Being homogeneous in x and k, (11) can be rewritten as
F 0ð1; SÞ ¼ 0. ð13Þ
1
ity coefficients of the orthotropic materials

al c11 c22 c33 c12

4 20 2 3.8
20 20 2 3.8
4 20 2 7.5

10 20 6 2.5
30 6 1.5 9.9
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The wave propagation properties of a certain medium can be understood by drawing the slowness curve,
defined by the points in the S plane satisfying (13). The slowness curve for the orthotropic media considered
here (see Fig. 1) will consist of two branches corresponding to the quasi-longitudinal and quasi-shear waves,
see [18]. Each branch is related to two roots ±x(k) of (11).

For each of these branches, the group velocity, Vg, is defined by
VgðkÞ ¼ rkxðkÞ. ð14Þ

If we also assume that c33 6¼ c11 and c33 6¼ c22, the two branches will not intersect and then the group velocity
can be expressed as
VgðkÞ ¼ rkxðkÞ ¼ �
oF 0ðxðkÞ; kÞ

ox

� ��1

rkF 0ðxðkÞ; kÞ; ð15Þ
i.e. the group velocity is normal to the slowness curve. For a detailed discussion of the physical interpretation
of slowness curves, group velocity and energy transport in solids, see [18].

4. The split-field PML model

The split-field PML model was first formulated by Berenger [1] for Maxwell�s equations. In [2], a split-field
PML model for a general hyperbolic system has been introduced. For a PML model in a layer parallel to the
x2-axis, for the system (6), it can be written
ov1

ot
þ dðx1Þv1 � A1

oðv1 þ v2Þ
ox1

¼ 0;

ov2

ot
� A2

oðv1 þ v2Þ
ox2

¼ 0.

ð16Þ
By construction the number of variables in the split-field PML is doubled compared to the number of variables
in the original system (6), i.e. for elastic waves the split-field PML is a system with 10 variables.

4.1. Stability of the split-field PML for orthotropic waves

In [3] the stability of the split-field PML was studied in detail. Here we list some of the results from [3],
which are relevant to the discussion of our PML in the next section.
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Fig. 1. Slowness curves for different materials.
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In the reminder of this section we will consider a split-field PML parallel to the x2-axis (see Eq. (16)) for the
simulation of orthotropic waves. We will also assume d to be constant and positive.

Theorem 3 (Bécache et al. [3], Theorem 2). Assume that the m · m system,
ut ¼ A1ux1
þ A2ux2

; ð17Þ

is strongly hyperbolic, and that the corresponding symbol has Ne non-zero and simple eigenvalues, and one zero

eigenvalue of order l0 = m � Ne. A necessary condition for weak stability of the split-field PML model (16) is that,

for all physical modes of (17)
8K ¼ ðK1;K2Þ such that jKj ¼ 1; S1ðKÞVg1ðKÞP 0. ð18Þ
One can show that the condition (18) is also sufficient for stability, of the physical modes, at all sufficiently
large frequencies, i.e. when e = d/jkj is small enough.

The geometric interpretation of Theorem 3 is that the first component of the slowness vector and the first
component of the group velocity should point in the same direction, see Fig. 2. From the shape of the slowness
curves in Fig. 1, it is easy to see that all materials except material III satisfy this high frequency stability
criterion.

The fact that the condition (18) is not sufficient for stability of the split-field PML for certain materials has
been illustrated by numerical experiments in [3]. In particular, when using the split-field PML for simulations
in materials IV and V exponential growth in time was observed. The growth in time is slow compared to the
instabilities observed when the high frequency stability condition is violated. Since they appear only after long
time, they where not observed in [2].

By a detailed analysis of the dispersion relation for orthotropic media, Bécache et al. obtained necessary
and sufficient conditions on the coefficients of elasticity. These conditions guarantee the stability of the
split-field PML model. They are (Lemma 4, Lemma 5 and Theorem 5 in [3])
ðc12 þ 2c33Þ2 6 c11c22;

ðc12 þ c33Þ 6 c11c22 þ c2
33;

ð19Þ
and either of the conditions
ðc12 þ c33Þ2 6 ðc11 � c33Þðc22 � c33Þ; ð20Þ
ðc11 þ c33Þðc12 þ c33Þ2 P ðc11 � c22Þðc11c22 � c2

33Þ. ð21Þ
These conditions explain the observed instabilities for material IV and V. Material IV violates condition (19)
and supports growing non-physical modes for high frequencies. Material V violates conditions (20)–(21) and
supports growing physical modes at intermediate frequencies.
Fig. 2. Stable and unstable portions of the slowness curve.



648 D. Appelö, G. Kreiss / Journal of Computational Physics 215 (2006) 642–660
5. The modal PML

We now consider the PML model for hyperbolic systems suggested by Hagstrom [16]. The model is
obtained by modifying the modal solutions of the original system, so that the solution inside the layer is
damped exponentially in space.

Again, consider the construction of a damping layer parallel with the x2-axis starting at x1 = 0. For the
construction of the modal PML, the first step is to state the modal solutions of (6) by performing Laplace
transform in time and Fourier transform in the x2 direction. The modal solution is
v̂ ¼ ekx1 ŵðs; ik2Þ; ð�sI þ kA1 þ ik2A2Þŵðs; ik2Þ ¼ 0. ð22Þ

Inside the layer, the governing equations are constructed by the following ansatz for the modal solution:
v̂L ¼ e
kx1þ

ðk�c1Þ
sþa1þa0

�c0

� �R x1

0
dðzÞ dz

ŵðs; ik2Þ. ð23Þ

The ansatz can, in principle, be formulated with arbitrary many parameters but for most hyperbolic systems
the parameters a0, a1, c0, c1 will be sufficient. The damping function d is positive and smooth, taking the value
zero at the interface x1 = 0.

The governing equations inside the layer can be derived by taking the derivative with respect to x1 of (23)
o

ox1

v̂L ¼ kþ ðk� c1Þ
sþ a1 þ a0

� c0

� �
d

� �
v̂L.
This equality can be reformulated as
kv̂L ¼
o

ox1

þ dc0 �
dð o

ox1
þ dc0 � c1Þ

sþ a1 þ a0 þ d

 !
v̂L.
Now introduce the auxiliary variable ŵ defined by
�ð o
ox1
þ dc0 � c1Þ

sþ a1 þ a0 þ d
v̂L ¼ ŵ.
Insert k in (22) and drop the subscript L
sv̂ ¼ A1

ov̂
ox1

þ dðc0v̂þ ŵÞ
� �

þ ik2A2v̂;

ðsþ d þ a1 þ a0Þŵþ
ov̂
ox1

þ ðdc0 � c1Þv̂ ¼ 0;
inverting the transforms, the equations in the layer are finally obtained
ov
ot
¼ A1

ov
ox1

þ dðc0vþ wÞ
� �

þ A2

ov
ox2

;

ow
ot
þ ðd þ �a1 þ a0Þwþ

ov
ox1

þ dc0v� �c1v ¼ 0.

ð24Þ
Here �c1 can be taken to be a differential operator on the form gox2
, where g is a real scalar, �a1 will also be on

the form aox2
and c0 and a0 are real scalars. Note that the layer will be perfectly matched for all ð�c1; c0; �a1; a0Þ

so the main issue is to choose them so that the layer is damping.
5.1. Application of the modal PML to orthotropic waves

In [19] an analysis of the model (24) applied to the system defined by
A1 ¼
a11 a12

a12 a22

� �
; A2 ¼

b11 b12

b12 b22

� �
ð25Þ
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was presented. For this particular system, a necessary and sufficient condition for stability of the modal PML
is that the slowness curves of the system (6)+(25) satisfies the condition (18) in the transformed coordinate
system
S01 ¼
k1

xþ a0 þ ak2

� g
k2

xþ a0 þ ak2

� c0; S02 ¼
k2

xþ a0 þ ak2

. ð26Þ
For a general system (6) this condition is only necessary.
The geometrical interpretation of the different parameters is that if g is non-zero, the slowness curve will be

rotated around origin in the transformed system. The parameter c0 corresponds to displacement of the slow-
ness curve in the S01 direction. The parameter a0 does not have an immediate geometrical interpretation but as
we soon will see it can add extra stability to the PML.

Similar coordinate transforms have been used to construct stable PML models for the linearized Euler
equations [9,20,21] and the shallow water equations [8]. However, in those works the authors explicitly
perform a coordinate transformation of the system at hand, then derive the PML equations, and finally
transform them back to the original coordinate system. With the modal PML we always work with the
original variables and the transformed coordinate system is just a tool for determining the parameters
in the model.

For material III there is no choice of parameter values for which the slowness curve in the transformed sys-
tem (26) satisfies the condition (18). For materials I, II, IV and V the condition (18) is satisfied if and only if
c0 = g = a = 0.

If we make that choice and apply the modal PML to the equations involving x1 derivatives (propagating
modes) the resulting equations of the PML become
ov
ot
¼ A1

ov
ox1

þ dðx1ÞE1w1

� �
þ A2

ov
ox2

;

ow1

ot
þ ET

1

ov
ox1

þ dðx1Þw1 þ a0w1 ¼ 0.

ð27Þ
Here E1w1 = [w1,1, w1,2, w1,3, 0, w1,4]T (w1,i is the ith component of the vector w1), ET
1 vx1
¼ ½v1; v2; v3; v5�Tx1

and a0

is a small positive number. With this formulation we only have four auxiliary variables. Hence the system (27)
contains only nine equations.

We note that the above choices of c0, g and a are necessary whenever the slowness curve(s) are centered
around the origin. Examples of equations with this property are Euler�s equations linearized at a quiescent
state and Maxwell�s equations, see [22]. Also the first order formulation of the (dispersive) wave equation
in 2 or 3 dimensions and the shallow water equations linearized at a quiescent state with or without Coriolis
forces have this property.

Including also the PML parallel to the x1-axis, we get the full formulation
ov
ot
¼ A1

ov
ox1

þ d1ðx1ÞE1w1

� �
þ A2

ov
ox2

þ d2ðx2ÞE2w2

� �
;

ow1

ot
þ ET

1

ov
ox1

þ d1ðx1Þw1 þ a01w1 ¼ 0;

ow2

ot
þ ET

2

ov
ox2

þ d2ðx2Þw2 þ a02w2 ¼ 0.

ð28Þ
Here the matrix E1 is defined as above, E2w2 = [w2,1, w2,2, 0, w2,3, w2,4]T and ET
1 vx2
¼ ½v1; v2; v4; v5�Tx2

.

5.2. Stability of the modal PML for orthotropic waves

In this section we will see that the stability properties of the model (27) can always be made as good as for
the split-field PML. For non-physical modes the stability at high frequencies will be better. The improved sta-
bility is due to the parameter a0 which, in the context of computational electro magnetics, often is referred to
as the complex frequency shift. It was first considered in [23] where it was introduced to make the PML model
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satisfy causality conditions imposed by the Kramers-Kronig relations. It has also been shown that it removes
the late time growth in PML formulations for Maxwell�s equations [7].

In the reminder of this section we will assume that the physical eigenvalues of the second order formulation
are simple and non-zero. As in [3] we consider d constant, and use the plane wave ansatz to obtain the disper-
sion relation of (27),
eF mðx; k1; k2; d; a0Þ � xF 0ðxðx� id � ia0Þ; k1ðx� ia0Þ; k2ðx� id � ia0ÞÞ ¼ 0. ð29Þ

Here, F0 is defined by (11). Comparing (29) with the dispersion relation of the split-field PML model (see [3])
we see that the dispersion relations are identical when a0 = 0. We thus have

Corollary 4. Under the assumptions of Theorem 3, a necessary condition for stability of the PML model (27),

with a0 = 0, is that all physical modes of (11) satisfy the condition on the orientation of the slowness curve (18).

Having established a formal equivalence of the two PML models when a0 = 0, we turn to the case a0 > 0.
The mode x = 0 will not cause instability and it is sufficient to consider
F mðx; k1; k2; d; a0Þ � F 0ðxðx� id � ia0Þ; k1ðx� ia0Þ; k2ðx� id � ia0ÞÞ ¼ 0. ð30Þ

Introducing
e ¼ d
jkj ; d ¼ a0

jkj ; Vp ¼
x
jkj ; ð31Þ
we can rewrite (30) as
F 0ðVpðVp � ie� idÞ;K1ðVp � idÞ;K2ðVp � ie� idÞÞ ¼ 0; ð32Þ

When e = d = 0, by homogeneity, (32) reduces to
V4
pF 0ðVp;K1;K2Þ ¼ 0.
The four zero modes will be referred to as non-physical modes and the other will be referred to as physical
modes. The stability of the physical modes can be analyzed by a perturbation analysis for e << 1. By assump-
tion, the physical modes are simple and will therefore have a well-defined phase velocity which can be
expanded as
Vd
pðK; eÞ ¼

x0ðKÞ
jkj þ ndðKÞeþ Oðe2Þ.
Here Vd
pðK; eÞ is a root of (32) and x0(K) is a root of (11). Correspondingly
xdðk; dÞ ¼ jkjVp

k
jkj ;

d
jkj

� �

is a root of (30).

Let xI ¼ Ixdðk; dÞ. A necessary condition for weakly stability is xI P 0. Since (6) is a hyperbolic system
Ix0ðKÞ ¼ 0. Thus, at high frequencies, the sign of xI will be determined by the sign of IndðKÞ.

Now we expand (32) around e = 0 and arrive at
0 ¼ F 0ðx0ðKÞ;K1;K2Þ þ endðKÞ oF 0ðx0ðKÞ;K1;K2Þ
ox

þ ie
K1

x0ðKÞ � id
oF 0ðx0ðKÞ;K1;K2Þ

ok1

þ Oðe2Þ.
Neglecting the higher order terms we have
IfndðKÞg ¼ I �i
oF 0ðx0ðKÞ;K1;K2Þ

ox

� ��1 K1

x0ðKÞ � id
oF 0ðx0ðKÞ;K1;K2Þ

ok1

� �( )
.

We can identify the group velocity
VgðKÞ ¼ �
oF 0ðx0ðKÞ;K1;K2Þ

ox

� ��1

rkF 0ðx0ðKÞ;K1;K2Þ;
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and express nd(K) in terms of the first component of the slowness vector
SðKÞ ¼ K
x0ðKÞ

;

and the first component of the group velocity Vg1ðKÞ,
nðKÞ ¼ iS1ðKÞVg1ðKÞ
x0ðKÞ

x0ðKÞ � id
.

We have
IfndðKÞg ¼ x0ðKÞ2

x0ðKÞ2 þ d2
S1ðKÞVg1ðKÞ. ð33Þ
Thus the sign of IfndðKÞg will not change when a0 > 0. This proves the following lemma.

Lemma 5. Under the assumptions of Theorem 3, a necessary condition for stability of the PML model (27), with

a0 > 0, is that all physical modes of (11) satisfy the condition on the orientation of the slowness curve (18). The

condition is sufficient for stability of all physical modes with sufficiently high frequencies.

The fact that the high frequency stability is not changed by a0 implies that if we are able to choose a0 so that
the weak instabilities associated with material IV and V are removed, the model will be stable. Also, it again
shows that the complex frequency shift cannot be used to remove the strong instabilities when materials of
type III are considered.

Remark 6. The sign of IfndðKÞg could potentially be changed by adding a free parameter ia3k1 in the
modal solution (23). Such a parameter would enter into the layer equation as a derivative in the normal
direction of the auxiliary variable. The matching properties and stability of such a model are under
investigation.

If condition (19) is violated there will be high frequent non-physical modes that are unstable. For such cases
a0 will provide additional stability.

Lemma 7. For sufficiently small damping d the parameter a0 will stabilize the non-physical modes at high
frequencies.

Proof. For a fixed a0 and d = 0 the dispersion relation (30), by homogeneity, can be written
ðVp � idÞ4F 0ðVp;K1;K2Þ ¼ 0. ð34Þ

We know that the non-physical modes are continuous functions of e and therefore can be expanded by a Puis-

eux series (see [24])
Vd
pðK; eÞ ¼ idþ ndðKÞer þ oðerÞ; r 2 Q

þ.
If r P 1 then we know that the perturbed root Vd
pðK; eÞ will have a positive imaginary part for sufficiently

small e i.e. it will be stable. Now assume that r < 1. By inserting the expansion into (32) we get
F 0ðndðKÞ2e2r þ oðe2rÞ;K1n
dðKÞer þ oðerÞ;K2n

dðKÞer þ oðerÞÞ ¼ 0.
For non-physical modes F0(id, k1, k2) f 0 since the physical modes are of order one. Therefore we can
write
ðndðKÞerÞ4F 0ðidþ ndðKÞoðerÞ;K1 þ oð1Þ;K2 þ oð1ÞÞ ¼ 0) ðndðKÞerÞ4F 0ðid;K1;K2Þ þ oð1Þ
) ðndðKÞÞ4F 0ðid;K1;K2Þ ¼ 0.
Thus we must have that nd(K) = 0 which is a contradiction. Hence r P 1 and the lemma is proved. h

We note that the proof of Lemma 7 is analogous to the proof of Theorem 1 in [3], which considers the well-
posedness of the general split-field model.
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Remark 8. From Lemma 7 we see that we need e� d if jnd(K)j � 1. In Section 6 we will present some
numerical examples, which indicate that djnd(K)j is small, and therefore a0 can also be chosen small. Our
experience is that for most cases where (19) is violated this holds.

To fully understand the effect of a0, it is necessary to analyze its influence on physical modes at intermediate
frequencies. This we have not been able to do by analytical means. However, in Section 6 we will present a
numerical analysis of the spectra of material V which indicates that a0 can also be used to remove instabilities
appearing when (20) or (21) are violated.

5.3. Well-posedness and hyperbolicity of the PML for orthotropic waves

In this section we will discuss the well-posedness and hyperbolicity of the modal PML for orthotropic
waves. Freezing the coefficients and computing the principal part of the symbol for the modal PML (27),
we get
P m ¼
ik1A1 þ ik2A2 0

�ik1I 0

� �
.

For the system (6), (7) one of the eigenvalues of ik1A1 + ik2A2 is identically zero and therefore Pm cannot be
diagonalized. The problem is only weakly hyperbolic. From the proof of Lemmas 5 and 7 we know that the
imaginary parts of the physical and non-physical modes are bounded. With xI ¼ RfkðP ðikÞÞg we know from
(2) that the constant coefficient problem is weakly well-posed.

For a Cauchy problem with variable coefficients strong hyperbolicity implies well-posedness (the question
of well-posedness can be determined by considering all ‘‘frozen coefficient’’ problems). However, if a constant-
coefficient Cauchy problem is only weakly hyperbolic (and therefore only weakly well-posed), it is not suffi-
cient to consider all its ‘‘frozen coefficient’’ problems to guarantee the well-posedness of the corresponding
variable–coefficient problem.

In the context of PML it is clear that coefficients have spatial variation so from a mathematical point of
view it is desirable that PML models should be strongly hyperbolic. This is not the case for the modal
PML or for the split-field PML for orthotropic waves. However, we know of no numerical computations
where there has been indications that a weakly well-posed PML model has become ill-posed when used with
variable coefficients.
6. Numerical experiments

In this section we want to numerically investigate the stability and effectiveness of our new model. In the
literature there exist few theoretical results on how the PML damping parameter d should be chosen for opti-
mal performance. In general the error in a computation can be split into one part associated with the finite
width of the layer, and one part associated with the numerical reflections due to the variability of d. The sec-
ond part depends on the discretization.

In a first set of experiments (without the stabilizing parameter) we empirically determined a suitable
strength and shape of the damping function d. These computations where done for all materials except III.
The final time in these experiments was short relative to the growth rate of the unstable modes in materials
IV and V.

Next we investigated to what extent a0 > 0 can be used to stabilize the model when used for materials IV
and V. To do this we computed the eigenvalues of the symbol for the constant coefficient problem (27). From
the theoretical investigations in Section 5.2 (for a0 = 0) we expected the physical modes at intermediate fre-
quencies to be unstable for material V. For material IV we expected instabilities for non physical modes at
high frequencies. The theoretical results where confirmed by the experiments.

Further, we performed simulations of the PML equations with constant d. In these simulations growth
rates agreeing with the computed eigenvalues were observed. In another set of experiments we allowed
d to vary spatially. Then, the observed growth rates were smaller, corresponding to smaller effective
damping.
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By further investigations of the eigenvalues of the symbol we found, as expected, that the high frequency
instabilities in the non-physical modes (material IV) could be removed by a suitably chosen a0. Moreover, we
found that the instabilities at intermediate frequencies for physical modes could also be stabilized. In both
cases we determined suitable numerical values for a0 with a typical value of d from the first set of experiments.
With our stabilized PML we revisited the first experiment and found that the change in performance was
negligible.

Finally we compared the performance of the PML with characteristic variables.
6.1. Damping parameter

In our first test problem we solve Eqs. (6) and (7) on the computational domain consisting of the square
(x1, x2) 2 [�10, 10] · [�10, 10]. As a non-reflecting boundary condition we add the layer (x1, x2)
2 [10, 12.9] · [�10, 10], where we solve the PML equation (27) without the stabilizing parameter.

The damping is chosen as the function
Fig. 3.
a layer
dðx1Þ ¼
dmax 1� ðx�11:45Þ2

1:45

� �p
10 < x < 12:9; p ¼ 4;

0 x 6 10.

(
ð35Þ
See Fig. 3 for a graphical description of the problem setup and the shape of the damping function.
To generate a wave we force the first component of the right-hand side of (6)–(7) by the pulse
f ¼ ð2p2ð0:9t � 1Þ2 � 1Þe�p2ð0:9t�1Þ2 gðx1; x2Þ; gðx1; x2Þ ¼
1

0:52
e
�7
ðx1Þ2þðx2Þ2

0:52 .
We use periodic boundary conditions in both directions.
To solve the problem numerically we introduce the grid x1,i = ih1, i = �N1/2, . . . , 0, . . . , N1/2 + Nl,

x2,j = jh2, j = 0, ±1, . . . , ±N2/2. Here h1 = 20/N1 and h2 = 20/N2 is the grid spacing in each direction. The
integers N1, N2 and Nl controls the number of grid points in each direction and in the layer.

We approximate the spatial derivatives with the standard eighth order centered difference stencil. For the
integration in time we use the standard fourth order Runge–Kutta method.

To measure the error we compute a reference solution. This is done by solving Eqs. (6),(7) on a larger
domain, consisting of the rectangle (x1, x2) 2 [�70, 70] · [�10, 10]. In all experiments we measure the relative
error
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Computational domain and shape of damping function. Due to the periodic boundary conditions this setup corresponds to having
on each side with monotonically increasing damping functions.
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2

1;pml þ v2
2;pml

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2

1;ref þ v2
2;ref

q			 			
2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

v2
1;ref þ v2

2;ref

q			 			
2

. ð36Þ
To determine a suitable strength for the damping of the PML we compute solutions (and errors) for several
different values of dmax and the parameter, p in (35). In our computations we use N1 = N2 = 200 and Nl = 29.
We find, empirically, that a suitable choice of p is 4 for all materials. For all tested materials, except material I,
the optimal value of dmax is in the interval 80–180. For material I it is smaller, 20–40. In material I the quasi-
transverse wave is much slower than in the other materials and we believe this is the reason for the smaller
value of dmax. In Figs. 4 and 5 the relative error for different values of dmax (with p = 8) is plotted for different
materials.

6.2. Stabilizing the PML

In this section we only consider the layer (x1, x2) 2 [10, 12.9] · [�10, 10], where we solve the PML equation
(27) for either material IV or V.
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6.2.1. The discrete spectrum

6.2.1.1. Material IV. Based on the experiments in the previous section, a typical value of dmax is 80. When d is
constant we can compute the eigenvalues k of the symbol
m
ax

 ℜ
 λ

Fig. 6.
axis. T
P ðk1; k2Þ ¼
ik1A1 þ ik2A2 dA1

�ik1I �ðd þ a0ÞI

� �
; ð37Þ
numerically, for discrete frequencies. In the layer (x1, x2) 2 [10, 12.9] · [�10, 10] (on the grid described in the
previous section), we can represent the discrete frequencies k1 = ±sp/2.9, s = 0,1, . . . , Nl, k2 = ±sp/20,
s = 0, 1, . . . , N2.

We expect the unstable modes for material IV to appear at high frequencies relative to the size of the damp-
ing, i.e. for d < jkj. For example when we compute the discrete spectrum with d = 80, Nl = 29 and N2 = 200
there are no unstable modes. However, when we increase the number of grid points to Nl = 290 and N2 = 500
we observe the growing modes displayed in Fig. 6.

In Fig. 6 the largest real part of the eigenvalues of (37) is plotted for two values of d. To the left d = 80 and
to the right d = 5. Computing the same quantity for several other values of d, we typically find that the unsta-
ble modes appear when k1 � d. This is also the case for the examples in Fig. 6. In the Figure we see that the
unstable eigenvalues approach a maximum value as k1 and k2 increase. This is expected since we know from
Section 5.3 that the problem is weakly well-posed, i.e. maxjRkj < j.

We know from Eq. (34) that non-physical modes are shifted with a0 into the stable half plane when d = 0.
Making experiments where we gradually increase a0 > 0 we find that, with large d, we can still stabilize the
unstable eigenvalues. For material IV we conclude that the needed size of a0 is about equal to the maximum
growth rate. In the examples with d = 80 and d = 5, a0 = 0.4 and a0 = 0.1 respectively, suffices.

It should be noted that when d increases, so does the growth rate and along with it the size of a0. However,
in a real computation there is an upper bound on dmax (due to numerical reflections), and thus an upper bound
on a0.

6.2.1.2. Material V. For material V we expect the unstable modes to be physical modes at intermediate fre-
quencies. High frequencies of these modes should be stable since the geometrical condition (18) is fulfilled.

In the left subfigure in Fig. 7 we plot the level contours of the largest real part of the eigenvalues of (37) as a
function of k1 and k2. This is done for three values of d, 20, 40 and 80 and a0 = 0. As expected there are unsta-
ble modes at intermediate frequencies, jkj < d.

In Section 5.2 we used perturbation techniques that require jkj � d, and could anticipate a linear shift of
the unstable modes for material IV. For material V we have instabilities at intermediate frequencies and
cannot use these techniques. However, when we gradually increase a0, we find that the unstable modes are
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stabilized. For material V the a0 needed for stability is about four times the growth rate. In the right subfigure
in Fig. 7 we have plotted contours of the largest real part of the eigenvalues of (37) for d, 20, 40 and 80, but
now with a0 = 0.5. Already, the smallest ‘‘bump’’ has been removed, but we need a0 = 1.5 to remove all of
them.

6.2.2. Time dependent simulations

Using the same numerical scheme as in Section 6.1, we solve the PML equation (27) in the layer
(x1, x2) 2 [10, 12.9] · [�10, 10].

First we solve for material IV. In all simulations we excluded the forcing and start the simulations with the
initial data
2
2

1/
2

Fig. 8.
and to
v1ðx1; x2; 0Þ ¼ v2ðx1; x2; 0Þ ¼ sin
g1px1

2:9
þ g2px2

20

� �
. ð38Þ
We take g1 = 16 and g2 = 6, corresponding to an eigenvalue with real part 0.022 when d = 5 and real part 0
when d = 80. We take N2 = 200 and Nl = 29. For all test cases we measure the L2 norm of

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2

1 þ v2
2

p
.

The results are displayed in the left subfigure of Fig. 8. The solid line is a computation with constant d = 5.
The solution grows fast, and by a least square fitting we find the growth rate to be 0.0213. As a reference we
plot the function e0.0213t (the dotted line). The solid line with circles is a computation with constant d = 5 and
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a0 = 0.1. As expected the mode is stabilized. In this case the solutions decreases fast until it saturates at 10�12.
The dashed–dotted line is a computation where d = d(x1) and a1 = 0. The damping d is the function (35) with
dmax = 80 and p = 4. This solution grows but with a slower rate, 0.00372. Finally, the dashed line is a com-
putation with dmax = 80 and p = 4 and a0 = 0.1. This solution is stable.

Next we solve for material V. We use the initial data (38) but now with g1 = 25 and g2 = 59. This corre-
sponds to an eigenvalue with real part 0.362 with constant d = 80. In this experiment we use two resolutions,
one coarser with N2 = 200 and Nl = 29, and one finer with N2 = 400 and Nl = 58.

The results are displayed in the right subfigure of Fig. 8. The dash-dotted line is a computation with the
coarser grid and constant d = 80. This solution grows, but with a slower rate, 0.0057, than expected. On
the coarser grid the initial data is not well resolved and we argue that slower growth rate is due to discrete
numerical effects. Supporting this argument is the solid line obtained from a computation with the finer grid
with constant d = 80. This solution grows with the rate, 0.3607, which is very close to the expected rate, 0.362.
The dotted line is the function e0.3607t, added for reference.

The dashed line is a computation on the finer grid with dmax = 80 and p = 4. It does grow, although rather
slowly, 0.0045. In general, when d varies spatially, the growth rate decreases. Finally, the lower dotted line is a
computation with dmax = 80 and p = 4, together with a0 = 1.5. The solution is stable and decays slowly
�0.001.

Here we have only presented the results for a specific initial data. We have also performed experiments with
several other sets of initial data and with different forcing both for the constant coefficient problem and for the
variable coefficient problems. They all behave similarly.

As a final test we take a0 = 0.1 for material IV and a0 = 1.5 for material V in the test problem from Section
6.1. In Fig. 5 the results are shown as the dotted lines. As can be seen there is little effect on the efficiency when
a0 > 0.

6.3. Comparison with characteristic boundary conditions

Finally we present some experiments displaying the efficiency of the modal PML compared to the simplest
boundary procedure. To do this we compute solutions for a problem on the computational domain defined as
the square (x1, x2) 2 [�10, 10] · [�10, 10]. On the computational domain we solve (6), (7). We force the v1

component in the solution by the pulse
f ¼ ð2p2ðt � 1Þ2 � 1Þe�p2ðt�1Þ2 gðx1; x2Þ; gðx1; x2Þ ¼
1

0:52
e
�7
ðx1þ8Þ2þðx2�8Þ2

0:52 .
We surround the computational domain by a layer of width 2. The damping function, d, is chosen as a mono-
tone fourth order polynomial taking the maximal value 50 at the outermost boundary.
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Fig. 9. Comparison of the error for the modal PML and characteristic boundary conditions.
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As comparison we compute the solution to the same problem but the computational domain is now
terminated with characteristic boundary conditions. That is, we extrapolate outgoing characteristic vari-
ables and put incoming characteristic variables to zero (see e.g. [25]). The errors are obtained by com-
puting a reference solution on a larger computational domain. This is done for materials I, II, IV
and V and the results can be found in Fig. 9. In Fig. 10

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2

1 þ v2
2

p
is plotted at t = 5, 10, 15, 20 for mate-

rial I. The computational domain is closed either with the modal PML or with characteristic boundary
conditions. When the modal PML is used, no reflections are seen but with characteristic boundary con-
ditions reflections, polluting the solution, can be seen. Similar results where obtained for materials II, IV
and V.
Fig. 10.
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2

1 þ v2
2

p
at time t = 5, 10, 15, 20 is plotted with modal PML and characteristic boundary conditions: (a) material I with PML; (b)

material I with ch. b.c.
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7. Summary

In this paper we considered the equations of elasticity in an anisotropic material. We have studied the same
five materials as in [3]. These materials where chosen to illustrate different types of behavior for the split-field
PML. Using the split-field PML together with three of these materials (III, IV, V), results in a model that sup-
ports exponentially growing solutions. With our new model, which includes an additional parameter, two of
these three (material IV and V) could be stabilized.

We have presented new theoretical results. First we established a formal equivalence between the split-field
PML and the modal PML without the stabilizing parameter. We then showed that the stability was improved
by the new parameter. In particular we showed that the instability for material IV can be removed. Our anal-
ysis also showed that one of the instabilities (III) cannot be stabilized by the current model.

We also presented numerical experiments that illustrate the theoretical results. Further, the experiments
showed that material V also be stabilized by the new parameter. Empirically we determined suitable numerical
values for the damping parameter. For these values we established the size of the stabilizing parameter.
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